USSR

UDC: 621.314.2(088.8)

GARBUZ, M. A.

"A Compensation Winding"

USSR Author's Certificate No 257597, filed 4 Aug 67, published 24 Nov 70 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6V363 P)

Translation: This patent introduces a compensation winding for compensating magnetic scattering fields such as transformer fields. The winding consists of two concentrically arranged sections on a coil. As a distinguishing feature of the patent, the design is simplified and dimensions are reduced by arranging the above-mentioned sections in a single row and creating an opposed magnetic field.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

Charles Inches and Research and the

UDC: 621.382.2

7] | MARKETT N. 1912 | 1911 | 1912 | 1912 | 1912 | 1913 | 1914 | 1914 | 1914 | 1914 | 1914 | 1915 | 1915 | 1914

ALFEROV, Zh. I., ANDREYEV, V. M., GARBUZOV, D. Z., and TRUKAN,

"Radiation Recombination in Epitaxial Compensated Gallium Arsenide" Leningrad, Fizika i tekhnika poluprovodnikov, No 10, 1972, pp 2015-

Abstract: The results of the experiments described in this paper were presented to the All-Union Conference on Recombination Radiation and Spontaneous Light Sources (Theses, 3, 1971, Falm). The purpose of the experiments was to investigate radiation recombination in epitaxial GaAs p-n structures doped with donor and acceptor materials. Light excitation was used for studying the spectral characteristics of the compensated material luminescence, and the kinetics of the radiating junctions was investigated under pulse excitation. The specimens were grown by the liquid method in an open system on n-GaAs substrates, with the solution cooled from 825 to 810°C, and were doped with germanium and tellurium to provide acceptors and donors respectively. A table of the specimens and their characteristics is given together with oscillograms of the light pulses for some of the structures, and curves of the

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC: 621.382.2

ALFEROV, Zh. I., et al, Fizika i tekhnika poluprovodnikov, No 10, 1972, pp 2015-2026

quantitative results are plotted. The authors thank A. N. Yor-makova for her assistance in preparing the specimens, B. I. Shklovskiy, I. S. Shlimak, and A. L. Efros for their consultations, and V. M. Tuchkevich for his interest in the work.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

ussr unc: 621.332.3

ALFEROV, Zh. I., AMOSOV, V. I., GARBUZOV, D. Z., ZHILYAYEV, Yu. V., KONNIKOV, S. G., KOP'YEV, P. S., and TROFIN, V. G.

"Investigating the Dependence of the Luminescent Characteristics of n and p Type GaP_xAs_{1-x} and $Al_xGa_{1-x}As$ Solid Solutions"

Leningrad, Fizika i tekhnika poluprovodnikov. No 10, 1972, pp 1879-1887

Abstract: The present article is the latest of a series published by the first-named author in collaboration with these or other researchers regarding the nature of photoluminescence spectra in solid solutions of GaP_xAs_{1-x} and Al_xGa_{1-x}As. In the present paper, results are given of experimental investigations into the position of the fringe band maximum radiation and the relative radiation intensity in the band as they depend on the composition of the solid solutions of both n and p types. The experimental specimens were in the form of epitaxial layers obtained by the liquid and gas transport method, their compositions being determined by the microroentgen spectral method with the JKA-5A analyzer. The luminescence was excited by a DRSh-250 lamp with a filter system removing the yellow and green mercury lines, and the radiation spectra were recorded by the MDR-2 monochromator with a grating of 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC: 621.362.3

ALFEROV, Zh. I., Fizika i tekhnika poluprovodnikov, No 10, 1972, pp 1879-1887

600 lines/mm. The radiation receivers were germanium photodicdes or the FEU-22. The authors express their gratitude to N. V. Klepikova and V. P. Kuz'min for their assistance with the experiments, and V. M. Tuchkevich for his interest in the work.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC 621.332.3

ALFEROV, ZH. I., ANDREYEV, V. M., GARBUZOV, D. Z., MOROZOV, YE. P., PORTNOY, YE. L., TROFIM, V. G., KHALFIN, V. B.

"Current Flow Mechanisms in the Presence of Electroluminescence of p-GaAs-n-Al Ga, As Heterojunctions"

Leningrad, Fizika i Tekhnika Poluprovodnikov, Vol 6, No 2, 1972, pp 366-375

Abstract: A study was made of the electroluminescent properties of p-GaAs-n- A_x^{Ga} As heterojunctions with a different level of alloying of the p and nregions. The electroluminescence spectra and the dependencies of the radiation intensity on the voltage applied to the heterojunction were investigated in the temperature range of 77-400° K. In heterojunctions with an acceptor concentration in the p-region of $\approx 10^{19}$ cm⁻³ and a donor concentration in the n-region >3.10¹⁷ cm⁻³ in the temperature range of 77-200° K, the radiation in the gallium arsenide band is caused by tunneling of the electrons in the p-GaAs through the barrier in the conduction band. The experimental results obtained are compared with the theoretical calculation made within the framework of the model usually used when investigating tunneling in Schottky barriers. In heterojunctions with weakly alloyed n-region $(\aleph_0 \le 3 \cdot 10^{17} \text{ cm}^{-3})$

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

ALFEROV, ZH. I., et al., Fizika i Tekhnika Poluprovodnikov, Vol 6, No 2, 1972, pp 366-375

there is two-way injection of the carriers. The electron and hole current components responsible for emission in the gallium arsenide and red bands of the electroluminescent spectrum are caused by thermal injection of the carriers. With an increase in the alloying level of the n-region (3.1017 $< N_D < 10^{18}$ cm⁻³)

the electron component of the current increases quickly and the relative radiation intensity in the gallium arsenide band builds up correspondingly. At reduced temperatures the electron component of the current in such heterojunctions is caused by tunneling of the carriers through the barrier in the conduction band. The thermal injection mechanism of the current responsible for recombination in the gallium arsenide band is retained after 300° K in heterojunctions with $N_{\rm D} \leq 7 \cdot 10^{17}$ cm⁻³. In heterojunctions with strongly alloyed nregion $(N_D \ge 2 \cdot 10^{18} \text{ cm}^{-3})$, the transparency of the barrier in the conduction band is so great that its presence has no noticeable effect on the dependence of the electron component of the current on voltage. At low voltages eV CE (GaAs) the radiation in these heterojunctions is caused by diagonal tunnel junctions of the $n-\Lambda l_{\nu}Ga_{1-\nu}As$ conduction band and the p-GaAs valence band. 2/2

UDC 621.357.6:66.067.3(088.8)

TARASOV, Yu. A., GARRITOV N. V., TSAKHNOVSKIY, I. M., VASIL'KO, N. P.

"Galvanoplastic Method of Manufacture of Metal Filters"

USSR Author's Certificate No 305209, Filed 27/01/70, Published 13/07/71, (Translated from Referativnyy Zhurnal, Khimiya, No 3, 1972, Abstract No 3 L331 P by K. S. Pedan).

Translation: A galvanoplastic method is suggested for the manufacture of metal filters by means of electrolytic precipitation of a metal layer onto a matrix, differing in that in order to increase the quality of the filters, the process is performed in an electrolyte containing 0.5-4% of a suspension of insoluble organic particles, and the coatings produced are heat treated until the enclosed organic particles are fully burned out. Example. An Ni coating is applied to a matrix from an electrolyte with a composition of (in g/1): NiCl₂·6H₂O 300; H₃EO₃ 30, temperature 50-55, D_c 2-4 a/dm² and

pil 4-4.5. When a powder of an insoluble organic compound such as polyethylene is dispersed in this electrolyte at between 0.5 and 4% with subsequent heat treatment at 400-450° for 1-1.5 hr, it is possible to regulate the quantity of pores in the Ni coatings produced. The pore size in the filter can be changed by changing the dimensions of the particle introduced to the electrolyte. It is pointed out that this method allows the production of filters with high filtering capacity of many metals and alloys.

- 34 -

UDC: 621.313.522:538.4

dinampininijini jasasamis ja di pregistametosa ari eri danamaj eta eta asateka na sesta deneral

BONDARCHUK, A. P., GARBUZOV, V. N., ZASLAVSKIY, B. I., OSERED'KO, Yu. S., KHANZHINA, Ye. I., YANTOVSKIY, Ye. I.

"An Open-Cycle MID Electric Power Plant Based on Natural Gas With Chemical Regeneration of Exhaust-Gas Heat"

Teplotekhn. Probl. Pryamogo Preobrazovaniya Energii Heat_Engineering Problem of the Direct Conversion of Energy -- Collection of Works, No 4, Kiev, Nauk. Dumka Press, 1973, pp 10-19 (Translated from Referativnyy Zhurnal Turbostroyeniye, No 11, 1973, Abstract No 11.49.153)

Translation: Results are presented from analysis of various factors: magnetic induction B, quantity of additive, end effects and air heating temperature on the thermodynamic effectiveness η_{st} of an MHD electric power plant (MHDEPP) with a frame channel of the MHD generator and a steam turbine and thermochemical processing of the fuel (water conversion) using natural gas as the fuel. Calculations of the MHD power plant are presented for a consumption of combustion products of 2000 kg/sec using two types of magnetic system (123): nonsuperconducting and superconducting. For the nonsuperconducting MS, $\eta_{\rm st}$ of the MHDEPP changes within limits of 50-49% and 51-52% as B is changed from 5 to

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

BONDARCHUK, A. P., et al., Teplotekhn. Probl. Pryamogo Preobrazovaniya Energii, No 4, 1973, pp 10-19

6.5 T at air temperatures of 1100 and 1500°K respectively. For a superconducting MS with B=6 T with a power plant capacity of 2500 Mw, $?_{\rm st}$ increases by 3.5-6.5% as air temperature is increased from 1100 to 1500°K. It is established that the presence of end sectors causes an increase in total length of the MHD generator and an increase in losses to cooling, reducing $?_{\rm st}$. Injection of K2CO3 with 1 wt. % K decreases $?_{\rm st}$ by 1.5%. Problems of water conversion of methane are studied. It is concluded that the MHD power plant discussed is quite promising. 5 Figures; 13 Biblio. Refs. M. I. Osipov

2/2

132

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

STEERING HER HER BEIT HER HER TOT THE FOR THE POST OF THE POST OF

UDC [621.362:538.4]017.001.24

GARBUZOV, V.N., KHANZHINA, YE.I.

"On The Effect Of Regeneration In The Vapor Part Of The Cycle And Some Losses In Efficiency Of An Open-Cycle Magnetohydrodynamic Electric Power Plant"

V sb. Teplotekhn. probl.pryamogo preobrazov.energii (Hest-Engineering Problems Of Direct Energy Conversion--Collection Of Works), Issue 2, Kiev, "Neuk.dumks," 1971, pp 11-22 (from RZh--Elektrotekhnika i energetika, No 12, Dec 1971, Abstract No 12A174)

Translation: The paper considers the effect of regeneration in the vapor part of the cycle, with the presence of low-potential losses of heat in various elements of a magnetohydrodynamic electric power plant (e.g., magnet, channel), on the efficiency of the electric power plant. Computations are presented on the efficiency of an open-cycle magnetohydrodynamic electric power plant with various losses of the pressure in the heat exchange apparatus located behind the diffuser. 5 ill. 4 ref. [Power Engineering Institute im. G.M.Krzhizhanovskiy, Hoscow]

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

1/2 009 UNCLASSIFIED PROCESSING DATE--230C170
TITLE--WASHING OF SUSPENSION POLYMERS IN A ROTOR PULSATION APPARATUS -U-

AUTHOR-(05)-MAYOROV, B.A., GARBUZOVA, G.L., SVICHAR, L.I., DERKO, P.P.,

COUNTRY OF INFO--USSR

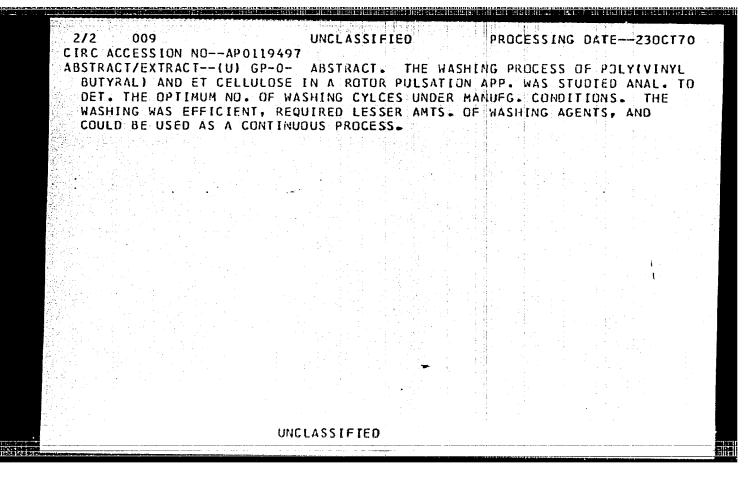
SOURCE--PLAST. MASSY 1970, (3), 59-80

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS, MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--POLYVINYL ACETAL RESIN, CELLULOSE RESIN, CHEHICAL SUSPENSION, MANUFACTURING METHOD

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0579

STEP NO--UR/0191/70/000/003/0059/0060

CIRC ACCESSION NO--APOL19497

UNCLASSIFIED

AND THE PROPERTY OF THE PROPER

UDC 621.378.325

GARDASH'YAN, V. M., CHAPLYGIN, V. A.

"Electro-Optical Gate for a Laser With Reduced Controlling Voltage"

Moscow, Kvantovaya Elektronika, No 2, 1971, pp 65-68

Abstract: An electro-optical laser gate is considered for operation on a voltage which gives a phase lead of \$\pi/\psi\$. The gate is essentially a series arrangement of a polarizer, a crystal with linear electro-optical effect and a prism with total internal reflection. The exes of the prism and the electro-optic crystal (under voltage) are parallel to each other and make an angle of \$450\$ with the exes of the polarizer, which passes only the light vector \$E_{\mathbb{L}}\$ and attenuates \$E_{\mathbb{L}}\$ emission. The gate is switched from the open to the closed state (and vice versa) by rotating the prism through a right angle about an exis perpendicular to the edge of the prism. The experimental energy characteristics of a ruby laser with such a gate are presented. The proposed gate can be used in lasers with unpolarized emission. In this case, the controlling voltage is \$4.5 kV for a KDP polarizer in a neodymium glass laser (wavelength 1.06 \$\mu\$). Five figures, bibliography of two titles.

1/1

- 76 -

Luminescence

USSR

UDC 541.138.2:546

GARDIN, YU. YE., KULABUKHOV, V. M., ODYNETS, L. L., PERSHINA, G. A., Petrozavodsk State University Imeni O. V. Kuusinen

"Mechanism of Galvanoluminescence During Anodic Polarization of Aluminum Oxide"

Moscow, Elektrokhimiya, Vol VII, No 8, 1971, pp 1184-1185

Abstract: A study was made of the spectral composition of the galvanoluminescence during anodic polarization of systems made up of aluminum, aluminum oxide and an electrolyte. The oxide layer was obtained by anodic oxidation of aluminum (99.99% pure) in two different electrolytes: a) an aqueous solution of boric acid (30 g/liter) with borax (0.05 g/liter) and b) an aqueous ous solution of oxalic acid (30 g/liter). The galvanoluminescence spectra are plotted for the two given cases. In two series of experiments the structure of the oxide layers remained invariant; however, the galvanoluminescence spectra corresponded to the electrolyte in which the measurement was taken. The results obtained agree with the previously stated proposition [S. P. Maminova, Elektrokhimiya, No 1, 365, 1965] that in systems made up of a metal (semiconductor) oxide and electrolyte galvanoluminescence

GARDIN, YU. YE., et al, Elektrokhimiya, Vol VII, No 8, 1971, pp 1184-1185 constitutes electrochemical luminescence and is connected with electrochemical reactions at the oxide/electrolyte interface.

2/2

. 26 _

UDC 541.1382:541

GARDIN, Yu. Ye.; ODYNETS, L. L., and TUMAKOV, V. S., Fetrozavodsk State University imeni O. V. Kuusinena

"Galvanoluminescence Upon Electrochemical Oxidation of Tantalum and Aluminum"

Moscow, Elektrokhimiya, Vol 6, No 10, Oct 70, pp 1562-1564

Abstract: A study was made of the basic regularities in the luminescence which occurs during electrochemical oxidation of tantalum and aluminum. The results of the study indicate that the luminescence of fully formed specimens results from the ionic current component. The anode luminescence is apparently a type of electrochemiluminescence, related to electrode reactions occurring at the oxide-electrolyte interface.

1/1

zara estapos entrograma na tres notantem estapon memos famon entropolar finitara, eligidad policiones entrograma entrograma en estapolar en estapolar en estapolar en estapolar en entrograma en estapolar en estapolar en estapolar en entrograma en entrogra

USSR

UDC 577.391+575.1+633.15:

575.1

VALODZIN, U. H., GARDZEY, I. A., and GARDZEY, H. M., Institute of Genetics and Cytology, Academy of Sciences Belorussian Son

"Postradiation Recovery of Primary Cytogenetic Damage and Radioresistance of Plants"

Minsk, Izvestiya Akademii Nauk BSSR, Seriya Biologicheskikh Nauk, No 3, 1970, pp 73-79

Abstract: Dynamics of changes in chromosomal aberrations in cells of the high-heterosis corn hybrid Minskiy-l and its original parental forms were studied. It is shown that a more intensive decrease in the quantity of cells with chromosomal aberrations is observed in the hybrid at the end of the first chromosomal aberrations is observed in the hybrid at the end of the first mitotic cycle. This indicates the presence of more pronounced reparative processes. It is assumed that one of the causes of the increased radioresistance of heterosis hybrids is their capacity for more intensive recovery from cytogenetic damage.

1/1

- 12 -

USSR

UDC 577.391+575.1+633.15: 575.1

VALODZIN, U. H., GARDZEY, I. A., and GARDZEY, H. M., Institute of Genetics and Cytology, Academy of Sciences Belorussian SSR

"Postradiation Recovery of Primary Cytogenetic Damage and Radioresistance of Plants"

Minsk, Izvestiya Akademii Nauk BSSR, Seriya Biologicheskikh Nauk, No 3, 1970, pp 73-79

Abstract: Dynamics of changes in chromosomal aberrations in cells of the high-heterosis corn hybrid Minskiy-l and its original parental forms were studied. It is shown that a more intensive decrease in the quantity of cells with chromosomal aberrations is observed in the hybrid at the end of the first mitotic cycle. This indicates the presence of more pronounced reparative processes. It is assumed that one of the causes of the increased radioresistance of heterosis hybrids is their capacity for more intensive recovery from cytogenetic damage.

1/1

USSR

UDC 577.391+575.1+633.15:575.1

VALODZIN, U. G., GARDZEY, I. A., and GARDZEY, H. M.

"Postradiation Restoration of Primary Cytogenetic Injuries and the Radioresistance of Plants"

Minsk, Izvestiya Akademii nauk BSSR, Seriya Biologicheskikh Nauk, No 3, 1970, pp 73-79

Translation: The study deals with the dynamics of changes in chromosome abberations of a high-heterosis corn hybrid Minskiy-1 and its original parent forms. The most intensive reduction in the number of cells with chromosome aberrations was observed at the end of the first mitotic cycle. This indicates the presence of more pronounced reparative processes. It is suggested that one reason for the increased radioresistance of heterosis hybrids is their capacity for more intensive restoration of cytogenetic damage.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC 577.391+575.1+633.15:575.1

VALODZIN, U. G., GARDZEY, I. A., and GARDZEY, H. M,

"Postradiation Restoration of Primary Cytogenetic Injuries and the Radioresistance of Plants"

Minsk, Izvestiya Akademii nauk BSSR, Seriya Biologicheskikh Nauk, No 3, 1970, pp 73-79

Translation: The study deals with the dynamics of changes in chromosome abberations of a high-heterosis corn hybrid Minskiy-1 and its original parent forms. The most intensive reduction in the number of cells with chromosome aberrations was observed at the end of the first mitotic cycle. This indicates the presence of more pronounced reparative processes. It is suggested that one reason for the increased radioresistance of heterosis hybrids is their capacity for more intensive restoration of cytogenetic damage.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR

Guenn

GARDZIYENKA, L. M., YERMAKOW, P. Z.

"General Annual Meeting of the Academy of Sciences of the Belorussian SSR"

Minsk, Vestsi Akademii Navuk Belaruskay SSR, No 3, 1970, pp 113-116

Abstract: The Secretary of the Presidium of the Academy, A. S. MAKHNACH, presented a report on the realization of fundamental research in mathematics, nuclear physics and technology. The development of scientific methods in all Belorussian establishments, in metallurgy and plastics, and the use of gases to cool the nuclear reactors, are just a few of Belorussian accomplishments. Geological, stratigraphical, and biological resources of Belorussia were technologically studied and developed. The results of scientific progress is contained in more than 2000 articles by the members of the Academy. Textiles and machine and instrument making have been augmented by development of automatization.

1/2

USSR

GARDZIYENKA, L. M., et al, <u>lestsi Akademii Navuk Belaruskay SSR</u>, No 3, 1970, pp 113-116

There were 7,996 people working in the various departments of the Academy of Sciences of BSSR as of February 1, 1970; of these, 107 were doctors of science and 614, candidates. The aspirants have increased by 104.4%. In conclusion, the Secretary pointed to immense work ahead in solving many problems, perfecting the structure of educational institutions, raising the level of scientific research, etc.

Academicians A. N. SEWCHANKA, M. A. DAROZHKIN, B. V. YERAF YEYEM, P. P. RAGAVOY, M. V. TURBIN, YA. R. KANAVALAW, I. S. KRAW CHANKA, M. S. KAZLOW, G. V. BAGAMOLAW, M. V. SMOL'SKI; and Corresponding Members K. P. BUSLAW, V. M. TREYER, AND L. V. VALADZ'KO passed the judgment on the reports.

2/2 7527 CSO:

1841-W

- END -

- 131 -

TERRETORINE BERNAT HUSBARD IN AND BERNAT FILE BERNAT BERNAT

LacitoroRA

- USSR

UDC 616.981.553-092.9

6

MATKOVSKIY, V. S., TSYBULYAK, G. N., ZUBIK, T. M., ZIUK, L. M., AKINDV, G. A., GAREMIN, Ye. M., GOGLOZHA, R. L., KUSTOV, N. A., PASHKOVSKIY, E. V., and TIROFEYEV, V. V., Chair of Infectious Diseases, Chair of Military Field Surgery, and Chair of Nervous Diseases, Military Medical Academy ineni S. M. Kirov, Leningrad

"The Pathophysiology of Experimental Botulism"

Moscow, Patologicheskaya Fiziologiya i Eksperimental naya Terapiya, No 3, 1971, pp 16-19

Abstract: A study was carried out of the disturbance of external respiration, gas content and acid-base state of blood, and of hemodynamic shifts with severe experimental intoxication with botulinus toxin. Fifty dogs were intoxicated with type A botulinus toxin. At the time of administration and at the peak of intoxication, the gas content of arterial and venous blood, hemoglobin, hematocrit, specific weight of blood and plasma, and content of sodium, potassium, lactic and pyruvic acid were determined. External respiration was studied by means of a type T35 spirometabolograph and circulation by the modified mechanical cardiographic method. Biocurrents of the cerebral cortex were recorded on a four-channel electroencephalograph. At the peak of 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

- USSR

MATKOVSKIY, V. S., et al, Patologicheskaya Fiziologiya i Eksperimental'naya Terapiya, No 3, 1971, pp 16-19

intoxication, a reduction of per minute respiration with a resulting lowered level of oxyhemoglobin in arterial blood, and respiratory acidosis were noted. EKG data revealed predominantly hypoxic shifts in the myocardium, and the EEG data -- inhibitory processes in the cerebral cortex. Intensified cardiac activity served as a compensatory mechanism for respiratory insufficiency. The secondary shifts in the function of organs and systems in connection with disturbances of a metabolic and functional nature played a vital role in the pathogenesis of botulinus intoxication. Morphological shifts in the CNS were apparently caused largely by disturbances in the microcirculation and were reversible. In treating severe botulinus intoxication, special attention should be paid to timely correction of external respiratory insufficiency, with artificial ventilation of lungs most expedient.

2/2

- 59 -

USSR

ubc 616.981.553

AKTHOV, G. A., LOBZIN, V. S., GAREMIN. Ye. M., ZHUK, L. N., and ZUBIK, T. M., Chair of Nervous and Infectious Diseases, Military Medical Academy imeni Kirov, Leningrad

"Data on the Diagnosis and Pathogenesis of Botulism"

Moscow, Zhurnal Nevropatologii i Psikhiatrii imeni S. S. Korsakova, Vol 71, No 7, 1971, pp 1,033-1,038

Abstract: Observation of six patients with botulism showed that gastrointestinal disorders developed in only three of them; three patients exhibited
only disturbances of the nervous system expressed primarily in oculomotor and
and bulbar disorders. In order to investigate changes in the nervous system
during botulism, 24 dogs were given intramuscular injections of botulinus
toxin type A in a dose of 2,500 MLD for mice per kg. Various branches of the
nervous system of 12 of the dogs were subjected to a pathenistological examination after the dogs were sacrificed on the 3d to 12th day after administration of the toxin. No signs of selective action of the toxin on the central
motor structures were detected. There was evidently selective action on
peripheral notor neurons. Correlation of clinical and morphological data indicated that the determining factor in the pathogenesis of paralytic syndromes
1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR

AKTEOV, G. A., et al, Zhurnal Nevropatologii i Psikhiatrii imeni S. S. Korsakova, Vol 71, No 7, 1971, pp 1,033-1,038

was disturbance of neuromuscular transmission. All branches of the nervous system were involved in the pathological process, but the morphological changes in the nervous system, which were of the type of an acute swelling, were generally reversible. Although slow recovery of the dogs that had not been sacrificed began on the 10th - 12th day after administration of the toxin, muscular weakness persisted for one month. The most active systems with the highest metabolism (the oculomotor apparatus and the bulbar system) were apparently affected first, but they also recovered fastest.

2/2

- 60 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UNCLASSIFIED PROCESSING DATE--20NUV70
TITLE--SELECTION OF A SPECIMEN FOR CONTROLLING THE EXTENT OF CONTAMINATION
OF FERROCHROMIUM -UAUTHOR-(03)-TUPCHIY, S.F., GAREVSKIKH, I.A., SAMSONOV, A.N.

CCUNTRY OF INFO--LSSR

SOURCE-ZAVCO. LAB. 1970, 36(3), 302-4

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--FERROCHROMIUM, NONMETALLIC INCLUSION, SILICON, METAL INGOT

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3001/0530

STEP NO-UR/0032/70/036/003/0302/0304

CIRC ACCESSION NO--APO126278

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

2/2 016 UNCLASSIFIED PRUCESSING DATE-- 20NOV70 CIRC ACCESSION NO--APO126278 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. IN FECR CONTG. SMALLER THAN OR EQUAL TO G.1-0.3 PERCENT SI THE LEAST NONMETALLIC IMPURITIES WERE FOUND IN THE CENTER OF THE INGOT, WHILE THE TOP CONTAINED MOST OF THE IMPURITIES AND THE BETTOM WAS BETWEEN THESE TWO. IN FECR CONTG. 1.5-1.7PERCENT SI THE DISTRIBUTION OF IMPURITIES DID NOT FOLLOW ANY PATTERN. THE CONTENT OF GASEOUS IMPURITIES WAS NOT AFFECTED BY THE LOCATION OF THE SAMPLE. GENERALLY, O CONCD. MOSTLY AT THE TOP OF THE INGOT, WHEREAS N WAS CONFINED MOSTLY TO THE BOTTOM OF THE INGOT. IN MOST OF THE INGOTS THE DISTRIBTUION OF SI IN C FREE FECR WAS UNIFORM; HOWEVER, IN EVERY LARGE INGOTS THERE WAS CONSIDERABLE DIFFERENCE IN THE HORIZONTAL AND VERTICAL DISTRIBUTION OF SI. FACILITY: ZAPOROZH. MASHINGSTR. INST. IM. CHUBARYA, ZAPOROZHE, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC 547.241

PUDOVIK, A. N., <u>CAREYEV, R. D.</u>, and SHTIL'MAN, S. Ye., Kazan' State University imeni V. I. Ul'yanov-Lenin

"Enolization of the Ethyl Ester of a-Dimethoxyphosphinylacetoacetic Acid"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 7, Jul 73, pp 1646-1647

Abstract: The adduct of the "aldol" type reaction of ethyl diazoacetate with dimethoxyacetophosphonate breaks down in refluxing dioxane, yielding nitrogen and the ethyl ester of α -dimethoxyphosphinylacetoacetic acid. In this compound the ratio of the tautomeric forms was the following: cis-enol form: trans enol form: ketone form = 69.1:21.4:9.5.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

enten en deutsten der sterke der sames formen in det der samt in der der des samt et hen det fin det fin der s Der samt der der samt en der samt en der samt der der der samt in der samt en der der det der samt en der samt

UDC 547.341

PUDOVIK, A. M., STABROVSKAYA, L. A., YEVSTAF'YEV, G. I., REMIZOV, A. B., and GAREYEV, R. D., Kazan State University imeni V. I. Ul'yanova-Lenina

"Kinetics of the 1,3-Bipolar Cycloaddition of Diphenyldiazomethane to Unsaturated Organophosphorus Compounds"

Leningrad, Zhurnal Obshchey Khimii, Vol 42(104), Vyp 8, 1972, pp 1862-1863

Abstract: The title study was carried out for organophosphorus compounds having the general form $H \longrightarrow C = C \nearrow P(0)X_2$

for 12 combinations of R, usually H, and X — usually alkyl, alkoxyl, aryl, or phenol groups. Values of the velocity constant, ranging from 0.61 to 20.35 are compared with the P=0 vibration, from 1190 to 1283 cm⁻¹ in a 0.2M benzene solution, and chemical shift of the P31 nucleus, from -10 to -33 m.d. in a 50% acetone solution. The reactivity of the studied compounds were closely correlated with the indicators of the influence of substitutions on the electronic behavior of the P atom. For this reaction the energy of activation $E_A = 12.5 \pm 0.4$ kcal/mole and the entropy $\Delta s = -35.2$, in good agreement with the 1,3-bipolar cycloaddition mechanism.

PARTE THE CONTRACT OF THE PARTE OF THE PARTE

UDC 547.341

PUDOVIK, A. N., GAREYEV, R. D., STABROVSKAYA, L. A., YEVSTAF'YEV, G. I., and REMIZOV, A. B., Kazan' State University Imeni V. I. Ul'yanov-Lenin

"Reactivity of Unsaturated Organophosphorus Compounds in the Reaction of 1,3-Dipolar Cycloaddition of Diaryldiazomethanes"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 8, Aug 73, pp 1674-1682

Abstract: The kinetics of the 1,3-dipolar cycloaddition reaction of diaryl-diazomethanes with organophosphorus dipolarophiles at 60° in m-xylene was investigated. The reaction mechanism is based on a single stage polycentric process with a cyclic electron transfer. The established order of dipolarophilic activity of the unsaturated organophosphorus compounds agrees well with current concepts of the effect of substituents at the phosphorus atom: additive manifestation of the inductive effect and the ability of the substituents to conjugate with the main system.

1/1

19

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC: 547.26'118

PUDOVIK, A. N., REMIZOV, A. B., STABROVSKAYA, L. A., SHTILLYAN, S. Ye., LUSHCHITS, I. G., GAREYEV, R. D., Kazan' State University imeni V. I. Ul'yanov-Lenin

"Adduct of the 'Aldol' Type of Ethyl Diazoacetate With Dimethyl Acetophosphonate"

Leningrad, Zhurnal Obshchey Khimii, Vol 42(104), No 5, Jun 72, p 1421

Abstract: The authors investigated the reaction of dimethyl acetophosphonate with ethyl diazoacetate at room temperature. It was found that an "aldol" addition product is formed without elimination of nitrogen.

$$(CII_3O)_2I' - C - CII_3 + N_2CIICOOC_2II_5 \longrightarrow (CII_3O)_2I' - C - OII$$

$$C$$

$$N_2 = COOC_2II_5$$

1/1

ho

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR UDC: 547.26'118

REMIZOV, A. B., GAREYEV, R. D., PUDOVIK, A. N., Kazam' State University imeni V. I. Ul'yanov-Lenin

"Rotational Isomerism of Dialkyl Esters of Aceto- and Benzoylphosphonic Acids"

Leningrad, Zhurnal Obshchey Knimii, Vol 42(104), No 6, Jun 72, pp 1238-1240

Abstract: The authors studied the infrared spectra of dimethyl and diethyl phosphonate (I and II) and dimethyl benzoylphosphonate (III). The spectra were taken on the UR-20 spectrophotometer. All three compounds were studied in the liquid state, and compound (I) was studied in the gaseous state as well. The effect of temperature was investigated. An analysis of the experimental material showed dynamic equilibrium of two isomers in compounds (I) and (II) due to rotation about the P-C bond. The rotational isomerism is observed in the liquid state both with and without a solvent.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC: 538.27+541.67+547.341+547.772

SAMITOV, Yu. Yu., CAREYFV R. D., STABROVSKAYA, L. A., PUDOVIK, A. N., Kazan' State University imeni V. I. Ul'yanov-Lenin

"Stereochemistry of Organophosphorus Compounds. II. NMR Spectra, Conformations of 3- and 5-Phosphorylated Δ 1- and Δ 2-Pyrazolines and Angular Correlation $^{3J}_{PCCH}$ "

Leningrad, Zhurnal Obshchey Khimii, Vol 42(104) No 6, Jun 72, pp 1227-1235

Abstract: 3-Methyl-3-dialkoxyphosphinyl-5,5-dimethyl- \triangle 1- and 3-phenyl-5-methyl-5-dimethoxyphosphinyl- \triangle 2-pyrazolines were synthesized. The paramagnetic resonance spectra of 3- and 5-phosphorylated \triangle 1- and \triangle 2-pyrazolines were studied, and their preferred conformations were determined. The angular correlation was empirically established for the vicinal constant of spin-spin interaction type 3 JpccH = f(ϕ) for the case where the carbon atoms in the P-C-C-H fragment have sp3 hybridization, and where there is no steric hindrance to rotation of the dimethoxyphosphinyl group about the P-C bond. It was established by ultraviolet and infrared spectroscopy that the tetrahedral phosphorus atom falls behind the phenyl group with respect to ability to enter into conjugation.

1/1

- 30 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC 547.512+547.341+547.722.2

PUDOVIK, A. N., GAREYEV. R. D., STABROVSKAYA, L. A., YEVSTAF'YEV, G. I., REMIZOV, A. B.

"Cyclic Addition of Diazoalkanes to Isopropenylphosphonates"

Leningrad, Zhurnal Obshchey Khimii, Vol XLII (CIV), No 1, 1972, pp 80-87

Abstract: A study was made of the reactions of diagomethane with esters of isopropenylphosphonic acid. By the addition of diagomethane to isopropenylphosphonates, the corresponding phosphorylated Δ^1 -pyrazolines were obtained which quickly isomerized into Δ^2 -pyrazolines in the presence of bases. By ultraviolet spectroscopy it was established that the tetrnhedral phosphorus atom interacts by its d-orbitals with the m-orbital of the C=N radical. With respect to capacity to enter into conjugation it is inferior to the ester carbonyl radical. The concentration and temperature infrared spectroscopy showed that the 3 and 5-phosphorylated Δ^2 -pyrazolines are associated at the expense of the intermolecular hydrogen bonds.

1/1

- 39 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

i i suunuku (penjin i kongenin (i kui sois i sukunga kapan eri kuusines) ku i eese soiseakoi ola ese

US3R

UDC 547.341

ISHMAYEVA, E. A., GAREYEV R. D., YASTREBOVA, G. YE. PUDOVIK, A. N.

"Dipole Moments of Organophosphorus Compounds. IX. Vinylphosphonate and vinyl-phosphinoxides"

Leningrad, Zhurnal Obshchey Khimii, Vol XLII (CIV), No 1, 1972, pp 73-76

Abstract: As a continuation of studies of organophosphorus compounds [E. A. Ishmayeva, et al., Izv. AN SSSR, ser. khim., 2695, 1970] by the method of dipole moments to establish their spatial structure and electron density distribution, the dipole moments of the diethyl esters of α -methyl, α -cyano and α -bromovinylphosphonic acids were determined. The possible conformers of these compounds are represented as follows:

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

ISHMAYEVA, E. A., et al., Zhurnal Obshchey Khimii, Vol XLII (CIV), No 1, 1972,

The ratio of the s-cis and s-trans-conformers in the α -substituted vinyl-phosphonates and their relative stability were determined by the electrostatic interaction of the dipoles. The presence of the rotational isomerism with respect to the C sp^2-P bond was established in the diethyl ester and the acid dichloride of β -butoxyvinlyphosphonic acid. The effective dipole moments of the C sp^2-bonds in the oxides of vinylphosphines indicate conjugation of the vinyl and P(0)R2 radicals.

2/2

~

WDC 547.512+547.341+547.772.2

ARTHURUM CHICACON SANTT TURATUS CLUBIC SUR ESTADO EN RESERVA CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL C

PUDOVIK, A. N., GAREEV, R. D., RAYEVSKAYA, O.E., Kazan State University imeni
V. I. Ul'yanov Lenin

"Synthesis and Properties of 3-Dialkoxyphosphono-5,5-diphenyl- Δ^1 -and Δ^2 -pyrazolines"

Leningrad, Zhurnal Obshchei Khimii, Vol 40, No 6, Jun 70, pp 1189-1195

Abstract: The reactions of diphenyldiazomethane (I) with diethyl and dimethyl vinylphosphonates were studied. Whereas in the reaction with diethyl vinylphosphonate the \$\Lambda^2\$-pyrazoline derivative, namely 3-diethoxy-phosphono-5.5-diphenyl-\$\Lambda^2\$-pyrazoline, is obtained, the \$\Lambda^2\$-analog is obtained when dimethyl vinylphosphonate reacts with \$\bar{\text{L}}\$. The characteristic \$P^2\$-CH3 IR bands at 1030, vinylphosphonate reacts with \$\bar{\text{L}}\$. The characteristic \$P^2\$-CH3 IR bands at 1030, 1060, and 1190 cm^{-1}\$ are observed together with the characteristic cands of the \$P^2\$-D group, the \$C^2\$-H bands of the benzene rings, and the \$N^2\$-N band. The \$\Lambda^2\$-pyrazolines are easily isomerized into the thermodynamically more stable \$\Lambda^2\$-pyrazolines. Strong bases and acids catalyze this transformation. Thus, the reaction of dimethyl vinylphosphonate with \$\bar{\text{L}}\$ in actionitrile at room temperature yields within \$1\$ hr the \$\Lambda^2\$-pyrazoline derivative in \$70.15 yield. It could be shown in a special experiment that the \$\Lambda^2\$-pyrazoline is completely transformed into the \$\Lambda^2\$-pyrazoline within \$10\$ hours at room temperature, pletely transformed into the \$\Lambda^2\$-pyrazoline within \$10\$ hours at room temperature.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

ede Salande de Salande de Comparido de la Comparido de Comparido de Comparido de Comparido de Comparido de Com Comparido de Comparido d

PUDOVIK, A. N., et al, Zhurnal Obshchei Khimii, Vol 40, No ó, Jun 70, pp 1189-

if triethylamine is present. The Δ^1 -pyrazoline, when heated for half-an-hour at 75°, was completely decomposed to yield quantitatively N_2 and 1-dimethoxy-phosphono-2.2-diphenylcyclopropane (II) (92.55), whereas the Δ -pyrazoline derivative remains unchanged under these conditions and is transformed into II only after heating to $160-170^\circ$. This indicates that the reaction of diphenyldiazomethane with vinylphosphonates yields first Δ^1 -pyrazolines which in a second stage can be isomerized to the corresponding Δ -pyrazolines or which can be decomposed to N_2 and the corresponding cyclopropanes. The presence of the cyclopropane ring could be shown by NMR spectra. IR spectral studies showed that the Δ -pyrazolines form associations as a result of intermolecular hydrogen bonds.

2/2

- 38. -

UIX 547.341+547.772.2

PUDOVIK, A. N., GAREYEV, R. D., and AGANOV, A. V., Kazan State University "1,3-Bipolar Addition of Diazomethane to Esters of Unsaturated Phosphonic Acids"

Leningrad, Zhurnal Obshchey Khimii, Vol 41, No 5, May 1971, pp 1017-1022

Abstract: 1,3-Bipolar addition of diazomethane to esters of vinyl-, propenyland allylphosphonic acids yields the corresponding Δ^2 -pyrazolines. The prototrophic isomerism which converts Δ^1 -pyrazolines to the Δ^2 form is spontaneous in this reaction sequence. The condensed form of the Δ^2 isomer forms associates at the intermolecular hydrogen bonds. All structures were confirmed by IR and NMR spectroscopy; this data and physical data on the specific compounds prepared in this work are presented.

1/1

. (; .

USSR

UDC 547.341.+547.772.2

i del ecultos de letra desenval transitor la cienta (i del lacino de la ciente de la compositor de la compo

PUDOVIK, A. N., GAREYEV, R. D., AGANOV, A. V., RAYEVSKAYA, O. E., and STABROVSKAYA, L. A., Kazan State University

PRESIDENTE PER ENTERNISMENT ENTERNISMENT PER ENTERNISMENT PER ENTERNISMENT PER ENTERNISMENT PER ENTERNISMENT P

"The Reaction of Diphenyldiazomethane with Tertiary Vinyl- and Allylphosphine Oxides"

Ieningrad, Zhurnel Obshchey Khimii, Vol 41, No 5, May 1971, pp 1008-1016

Abstract: The thermal reaction $(75^{\circ}-80^{\circ})$ of diphenyldiazomethane with tertiary phenylphosphine oxides proceeds with the formation of the corresponding Δ' -pyrazoline intermediates. The further reaction sequence, either reduces the pyrazolines to the related cyclopropane derivatives liberating nitrogen, or forms the isomeric Δ'° -pyrazolines. The comparative reactivity of oxides with diphenyldiazomethane decreases in the series:

 $(C_2H_5)_2P(0)CH=CH_2>C_2H_5(C_6H_5)P(0)CH=CH_2>(C_3H_3)_2P(0)CH=CH_2$

SSOCESSISSE PROGREDO DE CONTRARGO EN DOMENTO DE LE PROGREDO DE LA COMPANIO DE LA COMPANIO DE LA COMPANIO DE LA ESCUSIONES SESTOS CONTRARGO DE LA COMPANIO DE LA C

All structures were confirmed by IR, UV and NMR spectroscopy.

1/1

- 62 -

USSR

UDC 547.341

PUDOVIK, A. N., GAREYEV, R. D., AGANOV, A. V., and STABROVSKAYA, L. A., Kazan State University imeni V. I. Ul'yanov-Lenin

"The Reaction of Dimethoxyisopropenyl Phosphonate with 2-Diazopropane"

Leningrad, Zhurnal Obshchey Khimii, Vol 41, No 5, May 1971, p 1173

Abstract: 3-Methyl-3-dimethoxyphosphinyl-5,5-dimethyl-\(\Delta'\)-pyrazoline (I) is formed at room temperature by the reaction of the directlyl enter of isopropenylphosphonic acid with 2-diazopropane, with a yield of 73.4%. No isomerization of Δ'-pyrazoline takes place. Compound I is easily converted to 3-diphenoxy-phosphinyl-3-methyl-5,5-diphenyl- Δ'-pyrazoline, although, the geminal phenyl radicals are unstable at temperatures higher than 500.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

1/2 013

UNCLASSIFIED

PROCESSING DATE--- 300CT70

TITLE--ALPHA, OXOPHOSPHONATES IN REACTIONS WITH DIPHENYLDIAZOMETHANE -U-

AUTHOR-(03)-PUDOVIK, A.N., GAREYEV, R.D., STABROVSKAYA, L.A.

COUNTRY OF INFO--USSR

SOURCE-ZH. OBSHCH. KHIM. 1970, 40(3), 698

DATE PUBLISHED ---- 70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS--HETEROCYCLIC OXYGEN COMPOUND, BENZENE DERIVATIVE, POLYNUCLEAR HYDROCARBON, ORGANIC PHOSPHORUS COMPOUND, AZO COMPOUND, ORGANIC SYNTHESIS

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME-2000/0895

STEP NO--UR/0079/70/040/003/0698/0698

CIRC ACCESSION NO--APO124558

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

2/2 013 IRC ACCESSIGN NOAPO1245				
BSTRACT/EXTRACT—(U) GP-0 PH SUB2 CH SUB2 OCCURRED SUB2; I, M. 87-8DEGREES.	RAPIDLY AT BODEGRE	ES TO GIVE O	3PERCENT I AND	N
83PERCENT II, M. 129-30D	EGREES.			
				÷
		•		
	W.C. ACCIPTED			

voc 547.512 +547.341. +547.772.2

REGISTER ESCRETARIO CONTENDE CONTENDE DE L'ARREST DE LA CONTENDE DE L'ARREST D

PUDOVIK, A. N., and GAREYEV, R. D., Kazan' State University imeni V. I. Ul'yanov-Lenin, Kazan, Ministry of Higher and Secondary Specialized Education RSFSR

"Reactions of Diphenyldiazomethane With Isopropenylphosphonic Acid Derivatives"

Leningrad, Zhurnal Obshchey Khimii, Vol 40, No 5, May 70, pp 1025-1030

Abstract: For purposes of studying thermal reactions of diphenyldiazomethane, as well as reactions of diphenylmethylene with isopropenylphosphonic acid derivatives, the authors studied the behavior of diphenyldiazomethane towards dimethoxy-, diethoxy- and diphenoxyisopropenyl phosphonates under thermal reactions staged at 75°. Phosphorus-containing cyclopropane derivatives were obtained. Thermal
reactions with isopropenyl phosphonates proceed according to a "pyrazoline" mechanism rather than a "diazonium" mechanism. Isopropenylphosphonic acid dichloride reacts with diphenyldiazomethane to give 1dichlorophosphono-1-methyl-2,2-diphenylcyclopropane. A study of cata-

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR

PUDOVIK, A. N., and GAREYEV, R. D., Zhurnal Obshchey Khimii, Vol 40, No 5, May 70, pp 1025-1030

lytic reactions of isopropenyl phosphonates with diphenyldiazomethane at 75° in the presence of anhydrous copper sulfate showed that in the case of diethoxyisopropenyl phosphonate only a small quantity of cyclopropane derivative is formed. The reaction is accompanied by the formation of benzophenonazine and benzophenone. The diphenylmethylene resulting from the catalytic decomposition of diphenyldiazomethane possesses nucleophilic properties.

2/2

- 60 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UDC 547.341

PUDOVIK, A. N., GAREYEV, R. P., STABROVSKAYA, L. A., and AGANOV, A. V., Kazan' State University Imeni V. I. Ul'yanov-Lenin

"1,3-Dipolar Cycloaddition of 9-Diazofluorene to Unsaturated Organic Phosphorus Compounds"

Leningrad, Zhurnal Obshchey Khimii, Vol 43, (105), No 6, Jun 73, pp 1236-1240

Abstract: The reactions of 9-diazofluorene with unsaturated organic phosphorus compounds at room temperature pass through the formation of intermediate products -- Δ^1 -pyrazolenes, which, depending on experimental conditions, break down to nitrogen and cyclopropene derivatives, or isomerize to Δ^2 -pyrazolenes. In comparison to diphenyldiazomethane, 9-diazofluorene is less reactive in regard to its enophilic activity in the reactions of 1,3-dipolar cycloaddition to organic phosphorus dipolarophiles. When 9-diazofluorene was reacted with dimethoxyvinylphosphonate at about 80°C, the product was 1-dimethoxyvinyl-2-biphenylenecyclopropane.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

eren de la membra de la composição de la membra della membra de la membra de la membra de la membra de la membra della mem

UNCLASSIFIED

PROCESSING DATE-300CT70

TITLE-PENETRATION OF DEOXYRIBONUCLEASES INTO INTACT CELLS OF EHRLICH CARCINOMA AND THEIR INFLUENCE ON NUCLEIC ACID SYNTHESIS -U-

AUTHOR-103)-NUZHINA, A.M., VINTER, V.G., GAREYSHINA, A.Z.

COUNTRY OF INFO--USSR

1/2 022

SOURCE--- VOP. CAKOL, 1970, 16(4), 99-103

DATE PUBLISHED----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-CARCINOMA, RNA, DNA, PANCREAS, BACTERIA, RIBONUCLEASE, BIOSYNTHESIS

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3002/0486

STEP NO--UR/0506/70/016/004/0099/0103

CIRC ACCESSION NO-APO128055

UNCLASSIFIED

ABSTRACT/EXTRACT(U) DNASE PENETRATED IN	NTACT EHR	RLICH CAR	CINOMA C	ELLS. APP	ARENTLY	(in 2 :	STAGES	
INVOLVING ADSORPTION INTO THE CYTOPLASM.	ON ON THE	LL CONCN	MBRANE SI	URFACE AN UG-MLI FX	D DIREC	T PERMI	EATION	
STIMULATED AND AT L	ARGE CON	ICNS. (30-	-50 MUG-	ML) SHARP	LY INHI	BITED	THE	
SYNTHESIS OF DNA AN	ID KNA.	FAC	ILITY: :	STATE KAZ	AN UNIV	/., KAZ/	AN .	
	•				110			
					4			
			To Electrical					
######################################								
					11			
							* * •	
왕병하는 것이 되었다. 경화왕병원 기계								
					11			
Richards (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (19 Birthological Control of Control								
g Mariana. Sa Mariana da Mariana Mariana da Mariana da M								
							•	

USSR

UDC: 620.178.3:53.082.5

GARF, M. E., KUBYAK, R. F., Kiev

"Use of Fiber Optics for Observation of the Development of Fatigue Cracks"

Kiev, Problemy Prochnosti, No 3, Mar 73, pp 105-107.

Abstract: Methodology and results are presented from a study of the resistance of fiber light guides to variable loads arising during vibration. The possibility is demonstrated of using fiber light guides to study the regularities of fatigue rupture developing in areas not accessible for direct observation or in metal in a nontransparent medium. The investigation of the usability of glass fiber cords vibrating at 25-100 Hz at moderate accelerations showed that they are sufficiently reliable to study the regularities of the process of fatigue rupture. The method developed for observation of fatigue rupture does not require direct illumination of the surface observed or stopping of the test machine.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR UDC 577.3

TOROPTSEV. I. V., CARCANEVEU C. P., GORSHENINA, T. I., and TEPLYAKOVA, N. L.

"Pathological Anatomical Description of Changes Arising in Experimental Animals Under the Influence of Magnetic Fields"

Vliyaniye Magnitnykh Poley na Biologicheskiye Ob"yekty, pp 98-107

Abstract: A comparison of all morphological changes in the organs and tissues of laboratory animals studied revealed that the male sex glands have the greatest sensitivity to magnetic fields. Under the influence of this physical factor, there was an impairment of mitosis as a result of which gigantic multinuclear cells appeared in a number of organs (testicles, liver, kidneys, adrenal glands, epithelium of the crystalline lens). The set of morphological changes caused by a magnetic field in the whole organism makes it possible to speak of the specifics of the pathological anatomical picture. A study of morphological changes in dynamic terms revealed a manifest tendency to normalize impaired structures in organs and tissues after the effect of the magnetic fields stops. The biological effectiveness of pulsed and intermittent magnetic fields was higher than constant magnetic fields. The pathological changes in a number of organs and systems which arise under conditions of the magnetic fields tested are not catastrophic.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

PROCESSING DATE-20NOV7C UNCLASSIFIED 032 1/2

TITLE-EXPERIMENTAL EVALUATION OF LAGRANGIAN TURBULENCE TIME SCALE -U+

AUTHOR-(03)-BYZGVA, N.L., GARGER, YE.K., IVANCV, V.N.

CCUNTRY OF INFO--USSR

SOURCE-MOSCOW, IZVESTIYA AKADEMII NAUK SSSR, FIZIKA ATMOSFERY I ODEANA, VOL VI, NC 6, 1970, PP 547-555

DATE PUCLISHED----70

SUBJECT AREAS -- ATMOSPHERIC SCIENCES

TOPIC TAGS-EULER EQUATION, LAGRANGE EQUATION, ATMOSPHERIC TURBULENCE, TURBULENT MIXING, ATMOSPHERIC STRATIFICATION

CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0547

STEP NO--UR/0362/70/006/006/0547/0555

CIRC ACCESSION NO--APO132733

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

esta de la company de la compa

PROCESSING DATE--- 20NOV70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APOL32733 EXPERIMENTAL DATA ON THE ABSTRACT/EXTRACT--(U) GP-G- ABSTRACT. CHARACTERISTICS OF TURBULENCE IN LAGRANGIAN VARIABLES ARE PARTICULARLY IMPERTANT FOR EVALUATING TURBULENT MIXING AND DIFFUSION IN FLOWS WHERE THE GRADIENTS OF MEAN HYDRODYNAMIC FIELDS ARE ABSENT OF ARE SMALL. IN PARTICULAR, SUCH A PROBLEM ARISES IN THE BOUNDARY LAYER OF THE ATMOSPHERE IN EVALUATING DIFFUSION IN THE HORIZONTAL PLANE. IN THIS PAPER LAGRANGIAN AND EULERIAN TURBULENCE CHARACTERISTICS AT AN ALTITUDE CF ABOUT 100 M ARE EVALUATED FROM SIMULTANEOUS LAGRANGIAN AND EULERIAN MEASUREMENTS. CCMPAKISON OF THE VALUES OF DISSIPATION OF TURBULENT ENERGY OBTAINED FROM DATA IN THE INERTIAL RANGE USING THESE THO INDEPENDENT METHODS REVEALED A GOOD AGREEMENT. THE LAGRANGIAN TIME SCALE WAS EVALUATED BY DIFFERENT METHODS AND THE RESULTS WERE QUITE CLOSE. THE AUTHORS DERIVE THE EXPERIMENTAL DEPENUENCE OF THE LAGRANGIAN FACILITY: INSTITUTE OF TIME SCALE ON STRATIFICATION. EXPERIMENTAL METECRULOGY.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UNCLASSIFIED

UDC 612.821.6

USSR

GAREYEV, Ye. M., Chair of Human and Animal Physiology, Baskir State University, Ufa

"A Study of Time Estimation in Different Kinds of Human Activity"

Moscow, Zhurnal Vysshey Nervnoy Deyatel nosti imeni I. P. Pavlov, Vol 23, Vyp 5, Sep/Oct 73, pp 1,077-1,079

Abstract: Time estimation was compared in ten subjects during verbal, mathematical and physical work and during unoccupied intervals. It was found that the estimation was consistently lower during mental work, while that during physical work often approached the unoccupied estimation. The subjects reported counting during unoccupied time and physical work, and some mental work, but often used an estimation of the amount of time necessary for a unit of work or guesswork during complicated tasks. Time evaluation is said to be the formation of bonds between a program of activity of determined tempo and evaluation of the length of time passed. These bonds are considered to be disturbed by the inhibiting influences of negative induction during intellectual activity. The degree of inhibition is considered to depend on the closeness of the two forms of activity, as in counting and calculating, and the degree of concentration.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

Magnetohydrodynamics

USSR

UDC: 533.9...15

GARIB, M., KRAVCHUK, T. P.

"Relaxation Method of Plasma Diagnosis"

Tr. Un-ta druzhby narodov im. Patrisa Lumumby (Works of Patrice Lumumba Friendship University), 1972, 62, pp 48-55 (from RZh-Fizika, No 6, Jun 73, abstract No 6G135 by I. Moskalyov)

Translation: A relaxation method of measuring the concentration of charged particles is investigated. The principle of the method consists in measuring the characteristic damping time τ of the transient current in the circuit of a cylindrical capacitor filled with a magnetically active plusma. The shape of the current pulse when a square voltage pulse is sent to the input of the measurement circuit is determined by the capacitance of the "plasma capacitor", which depends on the permittivity of the plasma, and hence on the concentration n. Expressions are derived which relate the quantities τ , n, and the parameters of the measurement circuit for various special cases (effective frequencies of collisions of electrons and ions much greater than the corresponding cyclotron frequencies, much less than them, and approximately equal to them). The

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR

GARIB, M., KRAVCHUK, T. P., Tr. Un-ta druzhby narodov im. Patrisa Lumumby, 1972, 62, pp 48-55

paper gives the results of determination of the density of a molecular hydrogen plasma in the pressure range of $p=4-8\cdot 10^{-2}$ mm Hg in the absence of a magnetic field. The control dependence n on pressure obtained by probes confirms the data of the relaxation method.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

CONTRACT OF THE CONTRACT OF TH

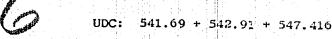
Steels

USSR

UDC 539.67

TAVADZE, F. N., ZOIDZE, N. A., BADZOSHVILI, V. I., METREVELI, V. SH., and GARIBASHVILI, V. I.

"The Effect of Eoron on the Internal Friction and Mechanical Properties of CONGYR Steel"


Sb. "Vnutrenneye treniye v metallicheskikh materialakh" (Internal Friction in Metallic Materials), Moscow, Izd-vo "Nauka," 1970, pp 132-134

Abstract: It is shown that the addition of boron to ONGVR steel leads to an increase in strength, and reinforces the effect of heat treatment on "heredity." In samples containing boron, a preliminary deformation at room temperature increases the strength and yield stress after the $\alpha - \beta - \alpha$ transformations.

It is assumed that an increase in mechanical properties is related to the effect of boron on the formation of steel substructure. Certain recommendations are given on the practical use of boron for strengthening the effect of heat treatment on the "heredity" of alloyed steels. 2 figures.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

GARIBDZHANYAN, B. T., STYEPANYAN, G. M., IRADYAN, M. A., and AROYAN, A. A., Institute of Fine Organic Chemistry, Yerevan, Academy of Sciences Armenian SSR

"Synthesis and Biological Studies of Some Novel Substituted Benzyl-bis- $(\beta$ -chloroethyl)-amines"

Yerevan, Armyanskiy Khimicheskiy Zhurnal, Vol 23, No 2, 1970, pp 166-172

Abstract: The authors synthesized a series of 2-alkoxy-5-chlorobenzyl-chlorides by chloromethylation of p-alkoxychlorobenzene with paraformaldehyde and HCl in presence of anhydrous zinc chloride, and reacted it with diethanol amine in dioxane to obtain 2-alkoxy-5-chlorobenzyl-bis-(β -hydroxyethyl)-amines, which were eventually converted to hydrochlorides. Biological properties of these compounds and of 3-chloro-4-alkoxybenzyl-bis-(β -chloroethyl)-amines obtained earlier were studied on rats and mice, and it was determined that all of them were more toxic than corresponding bromo-derivatives. Some of them also exhibited somewhat higher antitumor activity.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

1/2 014 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--SYNTHESIS AND BIOLOGICAL STUDY OF SOME NEW SUBSTITUTED BENZYLBIS

(BETA CHLOROETHYL) AMINES -U-

AUTHOR-(04)-GARIBDZHANYAN, B.T., STEPANYAN, G.M., IRADYAN, M.A., AROYAN,

A.A.

COUNTRY OF INFO--USSR

SOURCE--ARM. KHIM. ZH. 1970, 23(2), 166-72

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ANTITUMOR DRUG EFFECT, CHEMICAL SYNTHESIS, CHLORINATED ORGANIC COMPOUND, BENZENE DERIVATIVE, ALKOXIDE, AMINE

CONTROL MARKING -- NO RESTRICTIONS

PROXY REEL/FRAME--1997/0789

STEP NO--UR/0426/70/023/002/0166/0172

CIRC ACCESSION NO--APO119696

UNCLASS-IFIED-

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UNCLASSIFIED PROCESSING DATE--300CT70 CIRC ACCESSION NO--APOL19696 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. 2. (2, ALKOXY, 5, CHLOROBENZYL) BIS (BETA, CHLOROETHYL) AMINES (I) AND THEIR 4, ALKOXY, 3, CHLOROBENZYL ISOMERS (II) WERE PREPD. AS ANTITUMOR AGENTS AND COMPARED WITH THE BROMO ANALOGS. THE CLODERIVS, WERE MORE TOXIC THAN THE BR ANALOGS. LARGER ALKOXY GROUPS IN I WERE LESS TOXIC, BUT IN II THE EFFECT OF LARGER ALKOXY GROUPS WAS THE REVERSE. SOME CHLORO DERIVS. WERE BIOL. MORE ACTIVE THAN THE BROMO COMPDS. 2, ALKOXY, 5, CHLOROBENZYL CHLORIDES (III) WERE PREPD. BY CHLOROMETHYLATION OF N. ALKOXYCHLOROBENZENES WITH PARAFORMALDEHYDE AND HCL OVER ZNCL SUB2. (III) (0.1 MOLE), 0.2 MOLE HN(CH SUB2 CH SUB2 OH) SUB2, AND 40-50 ML DIOXANE GAVE 2,5, ROCLC SUB6 H SUB3 CH SUB2 N(CH SUB2 CH SUB2 OH) SUB2

(IV). IV (0.1 MOLE) IN 50 ML C SUB6 H SUB6 WITH 0.4 MOLE SOCE SUB2 IN C

FACILITY: INST. TONKOL ORG. KHIN..

2/2

014

SUB6 H SUB6 GAVE I.HCL.

EREVAN. USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

NECTOR RECORDER PROPERTY OF THE OCCUPATION OCCUPATION OF THE OCCUPATION OC

USSR

UDC 542.91+547.466+547.964.4

AGADZHANYAN, Ts. Ye., AMBOYAN, K. L., GARIBDZHANYAN, B. T., and CHACHOYAN, A. A., Institute of Fine Organic Chemistry imeni A. I. Mndzhoyan, Acad. Sc. ArmenianSSR, (Yerevan)

"Biologically Active Polymers. I. Synthesis of Polypeptides Containing Cytotoxic Groups"

Yerevan, Armyanskiy Khimicheskiy Zhurnal, Vol 25, No 11, 1972, pp 956-962

Abstract: Polypeptides of glycine, sarcosine, DL-norleucine, DL-leucine, L-phenylalanine, L- and D-valine were synthesized, connected to the ethylenimine, N,N-bis-(2-chloroethyl)-p-phenylenediamine or to the ethyl ester of sarcolysine by an amide linkage. Derivatives of polypeptides were obtained in anhydrous dioxane by polymerization of N-carboxy anhydrides of the corresponding aminoacids in presence of the above mentioned amines. The structure of the polymers has been confirmed by means of infrared and ultraviolet spectra. It was shown that some of the products exhibited antitumor activity on Walker carcinosarcoma and Ehrich ascitis tumor.

1/1

- 65 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

Oncology

USSR

UDC 577.1:615.7/9

MNDZHOYAN, A. L., GARIBDZHANYAN, R. T., ZAKHARYAN, R. A., and DEMIRCHYAN, D. K., Institute of Fine Organic Chemistry, Academy of Sciences Armenian SSR

"Changes in the Nucleotide Composition of RNA and DNA in Tissues of Tumor-Bearing Rats Upon Chemotherapy With Thio-TEPA"

Yerevan, Biologicheskiy Zhurnal Armenii, Vol 24, No 3, Mar 71, pp 3-10

Abstract: The effects of Thio-TEPA, a frequently used antitumor drug, in changing the nucleotide composition of RNA and DNA in rapidly proliferating tissues (the spleen and testes) of normal rats and in these tissues and tumor tissues in rats with S-45 sarcoma were studied. Thio-TEPA on intraperitoneal administration ten times in the maximum tolerated dose reduced the size of the spleen and testes in both normal rats and rats with a tumor. It also reduced the size of the tumor in rats with sarcoma as compared with controls not exposed to the effect of the drug. The nucleotide composition of both RNA and DNA in the spleen and testes was altered by the drug, principally because of alkylation of guanine at N_J, whereas there were no significant changes in the nucleotide composition of RNA in tumor tissue. The action of Thio-TEPA on rapidly proliferating tissue 1/2

USSR

MNDZHOYAN, A. L., et al., Biologicheskiy Zhurnal Armenii, Vol 24, No 3, Mar 71, pp 3-10

of the two organs studied consisted of reversion of growth, while its effect on tumor tissue was one of suppression of further growth.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

.

UDC 621.382.004:539.293

nel emisse diservament innu pri in in consent. I bereits diservament de la diservament de la diservament de la La diservament de la

ABDULLAYEV, G. B., Corresponding Member of the USSR Academy of Sciences, GARIBOV, M. A., GADZHIYEV, N. D., and TALIBI, M. A.

"Selenium Moisture Element -- a New Form of Semiconductor Converter"

Baku, Doklady Akademii Nauk Azerbaydzhanskoy SSR, No 2, 1973, pp 17-21

Abstract: This theoretical paper is concerned with selenium diodes with p-n heterojunctions which are capable of producing an electrical voltage in response to a moisture or humidity stimulus. The voltage-moisture characteristic of such a device is similar to that of photosensitive diodes responding to light. The purpose of this paper is to obtain a fuller notion of the mechanism producing this moisture emf. Experiments performed on such diodes showed that the electrical effects of the moisture are the results of processes in the electron-hole junction region. It is found that, under the action of humidity, there is an imbalance of electron-hole pairs on the n-layer side. All the holes originating in the n-layer and arriving at the junction under the effect of the contact field cross over to the p region; the electrons are repelled by the contact field and remain in the n region.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR

UDC 621.382.004:539.293

ABDULLAYEV, G. B., et al, Doklady Akademii Nauk Azerbaydzhanskov SSR, No 2, 1973, pp 17-21

Expressions are found for the current and voltage as functions of the humidity, and the corresponding characteristics are plotted.

2/2

- 34 -

TITLE—LUBRICANT COOLANT FOR COLD WORKING OF METALS -U-

AUTHOR-(05)-SCKOLOVSKAYA, V.V., RUDNEV, A.V., GARIBOV, V.R., LEYN, YU.I., BARINOV, V.YE.
CCUNTRY OF INFO-USSR

SGURCE-U.S.S.R. 264,581
REFERENCE-OTKRYTIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI, 1970.
DATE PUBLISHED-O3MAR70

SUBJECT AREAS-MATERIALS

TOPIC TAGS-METALWORKING LUBRICANT, CHEMICAL PATENT, HEAT TRANSFER FLUID.

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3002/0093

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NU--AA0127720

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

ABSTRACT/EXTRACT—(U) GP-O— ABSTRACT. THE TITLE LIQ. CONTAINS CALCINED SODA 0.3-0.4, NANO SUB2 0.12-0.14, NA TARTRATE 0.14-0.16, NAOH 0.03-0.05, GLYCEROL OR ETHYLENE GLYCOL 0.002-0.005, AND H SUB2 O TO MAKE 100PERCENT. FACILITY: VSESOYUZNYY NAUCHNO, ISSLEDOVATEL SKIY INSTRUMENTAL NYY INSTITUT.	2/2 023 CIRC ACCESSION NOAA0127720	UNCLASSIFIED	PROCESSING DATE-	-300CT70
100PERCENT. FACILITY: VSESOYUZNYY NAUCHNO, ISSLEDOVATEL'SKIY	ABSTRACT/EXTRACT(U) GP-0- SODA 0.3-0.4, NANO SUB2 0.1	L2-0.14, NA TARTRATE	0.14-0.16, NACH	
	100PERCENT. FACILIT			
UNCLASSIFIED	Harania de la composición del composición de la	LASSIFIED		

UDC 612.886

GARIBYAN, A.A., Neurobionics Laboratory, Academy of Sciences Armenian SSR

"The Role of the Vestibular Analysor in the Polyanalysor Mechanism of Statokinetic Coordination^B

Yerevan, Biologicheskiy Zhurnal Armenii, Vol 23, No 6, Jun 70, pp 63-67

Abstract: Of 80 dogs and 25 cats used in this experiment on statokinetic coordination, several of the animals were deprived of two legs to better study their compensatory adaptations. Two-legged animals subjected to bilateral disturbance of the labyrinths lose the ability to walk on 2 legs, which they gradually regain after several weeks: when also deprived of sight the ability to walk is regained more slowly. The loss of sight alone does not impair statokinetic coordination. Disturbance of the motor tracts in the pyramid has no effect on statokinetics, although motion is severely disturbed. Extirpation of the motor area at the sylvian fissure shows that this part is functionally connected with the vestibular analysor. Experimental data show that vestibular is the most important analysor in the mechanism of statokinetic coordination.

1/1

CIA-RDP86-00513R002200830010-5"

APPROVED FOR RELEASE: 09/17/2001

TO SHOW THE RESIDENCE OF THE PROPERTY OF THE P

USSR UDC: 669.71.472

REVAZYAN, A. A., GARIBYAN, A. O.

"Study of the Inertial Nature of the Formation of emf"

Tr. Arm. N.-I. i Proyekt. In-ta Tsvet. Metallurgii [Works of Armenian Scientific Research and Planning Institute for Nonferrous Metallurgy], 1972, No 1(10), pp 197-201 (Translated from Referativnyy Zhurnal Metallurgiya, No 8, 1973, Abstract No 8G173, by G. Svodtseva).

Translation: The formation of the emf of Al electrolyzers is inertial in nature. This property results from the inertial nature of the potential of the carbon anode. Hindering or facilitating the process of transfer of potential-determining ions may influence the potential of the carbon anode and, consequently, the formation of the emf. The emf is greater, the greater the difference in concentration of potential-determining ions at the electrode and in the volume of the electrolyte.

1/1

- 77 -

UDC: None

USSR ALIKHAN'YAN, A. I., BELYAKOV, E. S., GARIBYAN, G. M., LORIKYAN, M. P.,

MARKARYAN, K. Zh., and SHIKHLYAROV, K. K.

"Separation of Ultra-High-Energy Particles by the Radiation Transition Method"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, vol 16, No 6, 20 September 1972, pp 315-318

Abstract: Detectors of transition radiation in the x-ray frequency range are widely used for identifying high-energy particles in cosmic rays and in large accelerators. This letter gives the results of experiments conducted on transitional radiation occurring in foam plastic of 0.04 g/cm3 density with electron energies of 1-4.5 Gev, where it was shown that the use of the streamer chamber method with a foam plastic radiator permitted the separation of particles in the energy range of $Y = E/mc^2 > 10^3$ with high reliability. The equipment used for the measurements was the same as that described in an earlier article (A. I. Alikhan'yan, et al, Izv. AN Arm. SSR, Fizika, 5, 1970, p 267), modified to permit observation of the primary electron track, thus easing the procedure. The question of the possibility of separating protons and pi-mesons using this method is also investigated. The authors thank A. Ts. Amatuni for his useful comments. 1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

SALLARS DE 24 ARRES DES LA CALLANDE. PARTE SELECTRALISMO DE LOS DEL PERMINDIA DE LA CALLANDE DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE PARTE DE LA CALLANDE DE LA CALLANDE DE LA CALLANDE DE LA CALLANDE DE LA CONTRACTOR DE LA CONTRACTOR DE LA CALL

AVAKYAN, K. M., ALIKHANYAN, A. I., GARIBYAN, G. M., LORIKYAN, M. P., SHIKHLYAROV, K. K.

"Detection of Transient X-Radiation by Means of a Streamer Chamber"

Yerevan, Izvestiya Akademii Nauk Armyanskoy SSR, Fizika, Vol 5, No 4, 1970, pp 267-274

Abstract: A new method is proposed for detecting x-ray transient radiation by means of a streamer chamber with an admixture of Xe. Use of the streamer chamber provides for separate observation of the radiation as well as of the particle, and the presence of Xe provides great efficiency in the detection of photons. It is shown that the average number of transient quanta increases linearly in the electron-energy interval from 1.2 to 2.46 Gev. With the use of foam plastic instead of a layered medium, the efficiency of electron detection with respect to transient radiation equalled 86%.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

THE PROPERTY OF THE PROPERTY O

USSR

GARIFULLINA, R. L., ZARIPOV, M. M., STEPANOV, V. G., TOLPAROV, Yu. N., Kazan' State University imeni V. I. Ul'yanov-Lenin

"Exchange-Coupled MN2+ Ion Pairs in NaC1"

Leningrad, Fizika Tverdogo Tela, Vol 14, No 12, Dec 72, pp 3513-3516

Abstract: The electron paramagnetic resonance method is used to study exchange-coupled pairs of short-range, neighboring, bivalent manganese cations in sodium chloride crystals grown with sulfur dopants. It is shown that this pair is ferromagnetic. The constants of the spin hamiltonian are determined at room temperature for the multiplet with S=5: g=2.004+0.0005, |D|=0.0259+0.0001 T, $|E|=0.0029+5\cdot10^{-5}$ T, and |A/2|=0.0042+0.0005, |D|=0.0002 T. The variation of line intensity with temperature gives a constant of isotropic exchange interaction J=-(63+17) cm⁻¹. A model is proposed for compensation of excess charges of the Mn²⁺ ions.

1/1

- 40 -

USSR

UDC: None

GARIFULLINA, R. L. and ZARIPOV, M. M.

"Spin Hamiltonian of the Crystalline Field for Exchange-Coupled, Iron-Group Ion Pairs"

Leningrad, Fizika Tverdogo Tela, No 6, 1973, pp 1909-1910

Abstract: Cases are known in which fourth-order terms for the crystalline field must be taken into account to identify electron paramagnetic resonance spectra for ion pairs of the iron group. This brief communication obtains expressions corresponding to such terms of the crystalline field for the spin Hamiltonian of a pair. It is noted that the terms obtained are valid only when $2S \geqslant 4$, where S is the spin Hamiltonian. The authors thank H. V. Yeremin for his advice.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UNCLASSIFIED PROCESSING DATE--18SEP70 1/2 014 TITLE-EPR STUDY OF AN EXCHANGE COUPLED PAIR OF FE PRIMES POSITIVE TONS IN CORUNDUM -U-AUTHOR-(03)-GARIFULLINA, R.L., ZARIPOV, M.M., STEPANOV, V.G.

COUNTRY OF INFO--USSR

SOURCE--FIZ. TVERD. TELA 1970, 12(1), 55-8

DATE PUBLISHED ---- 70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--EPR, IRON, ANTIFERROMAGNETIC MATERIAL, SAPPHIER, CORUNDUM

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/0217

STEP NO--UR/0181/70/012/001/0055/0058

CIRC ACCESSION NO--AP0055013

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

PRUCESSING DATE--18SEP70 UNCLASSIFIED 014 CIRC ACCESSION NO--AP0055013 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. TEMP. AND ANGULAR DEPENDENCIES WERE STUDIED OF THE EPR SPECTRUM OF EXCHANGE COUPLED PAIRS OF FE PRIMES POSITIVE IONS IN NATURAL SAPPHIRE (IPERCENT FE). FOUR LINES WERE SEPO. AT H PERPENDICULAR TO C SUB3 AND 2 LINES AT H PARALLEL TO C SUB3 WHICH ARE RELATED TO THE LEVEL WITH S EQUALS 3 OF THE ANTIFERROMAGNETIC PAIR OF THE CLOSEST NEIGHBORS. FOR THAT PAIR, CALCN. WAS CARRIED OUT OF THE ENERGY LEVELS FOR S EQUALS 1, 2, AND 3. THE CONST. OF DIPOLE DIPOLE INTERACTION WAS CHOSEN AS 974 DE, WHICH IS CLOSE TO THE CONST. CALCO. FROM THE INTERIONIC DISTANCE AND EQUAL TO 912.9 DE. FROM THE TEMP. DEPENDENCE OF THE INTENSITY OF LINES THE CONST. WAS CALCO. OF THE ISOTROPIC EXCHANGE INTERACTION J EQUALS 250 PLUS OR MINUS 50 CM PRIME NEGATIVEL. BY USING AN 8 MM SPECTROMETER AT H PARALLEL TO C SUB3, FROM THE TEMP. DEPENDENCE. A LINE WAS SEPD. RELATED TO THE LEVEL WITH S EQUALS 1 FOR THE SAME PAIR. THE POSITION OF THE LINE COINCIDES WITH THE CALCO. POSITION.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR

STEPANOV, V. G.; GARIFULLINA, R. L.; ZARIPOV, M. M. (Kazan State University)
"Study of Exchange-Coupled Pair of Fe3+ Ions in Corundum by EPR Method"

Leningrad, Solid State Physics; January, 1970; pp 55-8

ΔΔΔ

ABSTRACT: By means of a three-centimeter spectroscope the authors studied the variation of the EPR spectrum of exchange-coupled pairs of Fe ions in a natural sapphire (concentration of iron ions on the order of 19) with temperature and angle. Four lines with H \perp C3 and two lines with H \parallel C3, related to the level with S = 3 of the antiferromagnetic pair of the nearest neighbors, were isolated. Energy levels for S = 1, 2, and 3 were determined for this pair. In this case a dipole-dipole interaction constant equal to 974 corsteds, which is close to that calculated according to the inter-ion distance and equal to 912.9 corsteds, was selected. The constant of isotropic exchange interaction $J = 250 \pm 50$ cm⁻¹ was determined by the relation of the line intensity to the temperature.

1/2

111

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

USSR

STEPANOV, V. G., et al, Solid State Physics; January, 1970; pp 55-8

A line related to the level with S=1 for this same pair was isolated on an eight-millimeter spectroscope with $H \parallel C_3$ according to the temperature relationship. The position of the line agreed well with the calculated position.

The authors thank S. A. Al'tshuler for his interest and discussion of the work and I. Fattakhov and R. Yu. Abdulsabirov for their assistance. The article includes three equations. There are 8 references.

2/2

UDC 533.411+541.1

त्रकारक सम्बद्धान कारणात्र वास्त्र कारणात्र कारणात्र कारणात्र कारणात्र कारणात्र कारणात्र कारणात्र कारणात्र कार इ.स.च्या कारणात्र क

USSR

OVCHINNIKOV, I. V., GAYNULIN, I. F., GARIF'YANOV, N. S., Corresponding Member of the Academy of Sciences USSR and KOZYREV, B. M., Kazan Physico Technical Institute, Kazan, Academy of Sciences USSR

"The Nature of Superfine Interaction with P^{31} in Dithiophosphenes Cu (II), VO(II), Cr0(III), MoO(III) and VO(III)"

Moscow, Doklady Academy Nauk SSSR, Vol 191, No 2, 11 Mar 70, pp 395-398

Abstract: One of the significant characteristics of electron paramagnetic resonance is the possibility of observing the spectra supplementary superfine structures (SSFS) in which there is intersupplementary superfine structures (SSFS) in which there is intersupplementary superfine structures (SSFS) in which there is intersuction of an unpaired electron with nuclear magnetic moments of atoms, situated considerable distance from the paramagnetic moments of atoms, situated considerable distance from the paramagnetic moments. The mechanism of such a distant dislocation of the unparied electron in many cases is still not clear and investigation of it is necessary both for taking from SSFS information about the nature of chemical bonds in complex compounds, and also for deeper understanding of the nature of superfine interaction itself.

1/2

USSR

OVCHINNIKOV, I. V., et al., Doklady Academy Nauk SSSR, Vol 191, No 2, 11 Mar 70, pp 395-398

In the article the authors review experimental results obtained by others in the investigation of EPR of dithiophosphene complexes of Cu(II), VO(II), CrO(III), MoO(III), and WO, as well as give of Cu(II), VO(II), CrO(III), MoO(III), and WO, as well as give the following results of their investigation of the nature of SSFS of P³lon the compounds Cu(II) and VO(II): (a) the appearance of SSFS of P³lospecially in the complex VO(II), of extremely large intensity; (b) significant distinction in the magnitude of the superfine interaction isotropic constant AP in Cu compounds in comparison with analogous V compounds; (c) little anisotropy of superfine interaction; (d) the constant AP increases during substitution of less electronegative radicals for greater electronegative ones. Data on the other investigated compounds is also given.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--NATURE OF PHOSPHORUS, 31 HYPERFINE INTERACTION IN DITHIOPHOSPHINE
COMPLEXES OF CU PRIMEZ POSITIVE, VO PRIMEZ POSITIVE, CRO PRIME3
AUTHOR-(04)-OVCHINNIKOV, I.V., GAYNULIN, I.F., GARIFYANOV, N.S., KOZYREV,
B.M.

COUNTRY OF INFO--USSR

SOURCE-DOKL. AKAD. NAUK SSSR 1970, 191(2), 395-8

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY, NUCLEAR SCIENCE AND TECHNOLOGY

TOPIC TAGS--PHOSPHORUS ISOTOPE, PHOSPHORUS SULFIDE, COPPER COMPLEX, CHRONIUM COMPLEX, MOLYBOENUM COMPLEX, TUNGSTEN COMPOUND, VANADIUM COMPLEX, HYPERFINE STRUCTURE, MOLECULAR ORBITAL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/1508

STEP NO--UR/0020/70/191/002/0395/0398

CIRC ACCESSION NO--AT0138508

UNCLASSIFIED

UNCLASSIFIED

PROCESSING DATE--04DEC70

CIRC ACCESSION NO-AT0139508

ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. A TABULATION OF PRIME31 P FINE
STRUCTURE LINES IS GIVEN FOR THE COMPLEXES OF CU PRIME2 POSITIVE, CR)
PRIME3 POSITIVE, MOD PRIME3 POSITIVE, WO PRIME3 POSITIVE, AND VO PRIME2
POSITIVE WITH R SUB2 PS SUB2 PRIME NEGATIVE ION IN MHICH R IS A PR, PH,
ET, OR ETO GROUP. IN THE VANADYL COMPD. A GREAT DEAL OF FINE STRUCTURE
ARISES FROM PRIME31 P. THE FINE STRUCTURE IS EXPLAINED IN TERMS OF MO
THEORY. FACILITY: KAZAN. FIZ. TEXH. INST., KAZAN. USSR.

randorranter termendere i mitter etermiler decendale i bildatike i kartara ete egit 194 bilbederik

USSR

WC 621.357.1.035.2.1661.418(088.8)

KHALILOV, V. R., ABUBAKTROVA, F. S., GELIYEVA, T. N., GARIFZYAHOV, A. G., VALITOV, R. B., Sterlimakov Chemical Factory

"A Process for Impregnating Graphite Objects"

USSR Author's Certificate No 345093, Filed 24 Mar 70, published 10 Aug 72 (from Referativnyy Zhurnal -- Khimiya, No 8(III), 1973, Abstract No 8L256P)

Translation: A process is patented for the impregnation of graphite articles (rods used during the electrolysis of NaCl and the production of chlorine and sodium hydroxide) by polymerized flax oil in the presence of a catalyst. It is improved in that in order to increase strength and chemical stability of the articles, a peroxide compound, for example H₂O₂, was used as a catalyst.

The process was carried out in the normal manner. The flax oil was first polymerized in the presence of an intiator - 1 to 3 weight $5~{\rm H}_2{\rm O}_2$ (30%) at 80°

for 10-20 hours. The graphite rod was impregnated with a newly prepared polymer at 80° for 3 hours. After which, it was dried at the same temperature for 4 hours. Drying of the oil resulted in its uniformity in the graphite rod, chlorine and acid at high temperatures. The rod, impregnated with wax, was destroyed after 6 months in the vat at a temperature of 90°. The rods 1/2

- 3 -

USSR

KHALILOV, V. R., et al., USSR Author's Certificate No 345093, filed 24 Har 70, published 10 Aug 72

impregnated with the polymerized flax under the same conditions did not show signs of destruction.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

1/2 010 UNCLASSIFIED

PROCESSING DATE--27NDV70

on a comment and a time to the state of the

TITLE--1,5,9,CYCLODODECATRIENE -U-

AUTHOR-(03)-GARIFZYANOV, G.G., VALITOV, R.B., BIKBULATOV, I.KH.

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 263,588
REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI 1970,
DATE PUBLISHED--10FEB70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--CYCLIC GROUP, BUTADIENE, CATALYTIC ORGANIC SYNTHESIS, CHEMICAL PATENT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3006/1589

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--AA0135230

UNCLASSIFIED

est de la companya del companya de la companya del companya de la companya de la

[1885] 1885 - 기계 전 1885 - 1885 - 1885 - 1885 - 1885 - 1885 - 1885 - 1885 - 1885 - 1885 - 1885 - 1885 - 1885 -	UNCLASSIF	IEO	PR	oces	s i ng	DATE-	-27N	0770	
CIRC ACCESSION NOAA0135230 ABSTRACT/EXTRACT(U) GP-O- TREATING 1,3,BUTADIENE WITH	ABSTRACT.	THE T	ITLE CO	HPD.	IS NI H	PREPD.	BY AND		
TRIISOBUTYL ALUMINUM AT 100 FACILITY: STERLITAMAKSKIY	-30DEGREE	S UNDER	INTENS	IVE	HIXII	۱G.			
									•
######################################									
Andrew Comments of the Comment	LASSIFIED								-

1/2 012 UNCLASSIFIED. PROCESSING DATE--040EC70
TITLE--COMPOSITION FOR REMOVING LAC DYE COATINGS -U-

AUTHOR-(05)-VOLODIN, N.L., GARIFZYANOV, G.G., RAKHIMOV, R.R., POTAPOV,

A.M., SHAROV, V.G. COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 265,341
REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI 1970,
DATE PUBLISHED--O9MAR70

SUBJECT AREAS -- MATERIALS, CHEMISTRY

TOPIC TAGS--LACQUER, DYE, ORGANIC SOLVENT, CHEMICAL PATENT, POLYETHYLENE,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/1766

STEP NO--UR/0482/70/00G/000/0000/0000

and the constitution of th

CIRC ACCESSION NO--AA0137006

UNCLASSIFIED

2/2 012	UNCLASSIFIED	PROCESSING DATE	04DEC70
CIRC ACCESSION NOAA0137006 ABSTRACT/EXTRACT(U) GP-0- 7:3-5:5 VOL. POLYETHYLENEP	ABSTRACT. THE TITE	E COMPN. CONSISTS	OF
1111	CLASSIFIED		

PROCESSING DATE--230CT70 UNCLASSIFIED

TITLE--CONVERSION OF VINYLCYCLOHEXANE ON A PALLADIUM CATALYST -U-

AUTHOR-(03)-GARIFZYANOV, G.G., BIKBULATOV, I.KH., VALITOV, R.B.

COUNTRY OF INFO--USSR

SOURCE--NEFTEKHIMIYA 1970, 10(11, 28-33

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--CYCLOHEXANE, PALLADIUM, CATALYST ACTIVITY, CYCLOHEXENE, ETHYLBENZENE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0573

STEP NG--UR/0204/70/010/001/0028/0033

CIRC ACCESSION NO--APOL19491

阿斯巴纳马斯

UNCLASS IF LED

PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APOL19491 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. 4, VINYLCYCLOHEXENE (1) WAS EVAPO. AT 1350EGREES; MIXED WITH 4 MOLES N AND PASSED THROUGH HOT 0.8-1.2PERCENT PD-C CATALYST (30 ML) IN A QUARTZ TUBE (DIAM. 2 CM), AT A CONST. RATE OVER 40-120 MIN (PRIOR TO THE RUNS THE GATALYST HAS ACTIVATED WITH H 3 HR AT 135DEGREES). EVERY 5-10 MIN THE REACTOR EFFLUENT WAS ANALYZED CHROMATOGRAPHICALLY. CONVERSION OF I WAS STUDIED AT A SPACE VELOCITY OF 0.1-3 NL-MIN, AND AT TEMPS. 135 TO 220DEGREES. THE EFFLUENT PRODUCTS CONTAINED EHTYLCYCLOHEXENE (III). ETHYLBENZENE (III), AND ETHYLCYCLOHEXANE (IV). THE CONVERSION OF I INCREASED WITH INCREASING CATALYST TEMP. THE ANT. OF INTERMEDIATE II IN THE EFFLUENT INCREASED RAPIDLY TO A MAX. AT 150-5DEGREES. THEN DECREASED LCONVERTED INTO III AND IV). THE WT. RATIO OF III TO THE SUM OF II AND IV IN THE PRODUCTS OF 130-50DEGREES RUNS WAS 1.3-1.5; IT WAS 3.1-3.7 AT 210DEGREES. ETHYLCYCLOHEXADIENE WAS NOT DETECTED, BUT WAS PROPOSED AS FACILITY: STERLITAMAKSKII KHIM. ZVOD. AN INTERMEDIATE. STERLITAMAK, USSR.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

HUCLASSIEIED

1/2 009 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--DITHIDETHYLENE GLYCOL COMPLEXES OF CHROMIUMIV) AND MOLYBDENUM(V)

STUDIED BY EPR -U-AUTHOR--GARIFYANOV, N.S.

COUNTRY OF INFO--USSR

SOURCE--DOKL. AKAD. NAUK SSSR 1970, 190(6), 1368-9 (PHYS CHEM)

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--CHROMIUM COMPLEX, MOLYBDENUM COMPLEX, EPR SPECTRUM, ETHYLENE GLYCOL, ELECTROPHORESIS

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1578

STEP NO--UR/0020/70/190/006/1368/1369

CIRC ACCESSION NU--ATOL16986

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

PROCESSING DATE--230CT70 UNCLASSIFIED 009 CIRC ACCESSION NO--ATO116986 ABSTRACT. EPR STUDIES OF DITHIDETHYLENE ABSTRACT/EXTRACT--(U) GP-0-GLYCOL COMPLEXES OF CR(V) AND MO(V) WERE CONDUCTED ON LIG. SOLMS, AT 290 DEGREESK AND IN FROZEN FORM AT 77 DEGREESK AT UPSILON EQUALS 91,616 THE SOLVENT WAS HOOME SUB2. THE PARAMETERS OF THE SPECTRA OF THESE COMPLEXES AS WELL AS THOSE OF THE ETHYLENE GLYCOL COMPLEXES OF THE DITHIDETHYLENE COMPLEXES HAVE C CRIV) AND MOIVE ARE TABULATED. SUBAUPSILON SYMMETRY. SUCH SYMMETRY IS OBTAINED IF 4 S ATOMS OF THE DITHIOETHYLENE GLYCOL LIGANDS ARE LOCATED AROUND THE METAL IN THE FORM OF A SQUARE AND IF THE METAL O BOND IS DIRECTED PERPENDICULAR TO THE PLANE OF THIS SQUARE. ELECTROPHORESIS STUDIES SHOW THAT THE COMPLEX FACILITY: FIZ.-TEKH. INST., KAZAN, USSR. CARRIES A NEG. CHARGE. UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

1/2 013 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--ELECTRON PARAMAGNETIC RESONANCE OF PYRIDINE AND THIOCYANATE

NITROSYL COMPLEXES OF CHRONIUM I -U-

AUTHOR-(02)-GARIFYANDV, N.S., LUCHKINA, S.A.

COUNTRY OF INFO--USSR

PHENON PHENON

SOURCE--IZV. AKAD. NAUK SSSR, SER. KHIM. 1970, (2), 455-6

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY, NUCLEAR SCIENCE AND TECHNOLOGY

TOPIC TAGS--CHROMIUM COMPLEX, PYRIDINE, THIOCYANATE, NITROSO COMPOUND, CHROMIUM ISOTOPE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0636

STEP NU--UR/0062/70/000/002/0455/0456

CIRC ACCESSION NO--APO119548

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

and an experience of the contraction of the contrac

PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APO119548 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. EPR SPECTRA WERE REPORTED FOR THE NITROSYL COMPLEX OF CR(I) WITH PYRIDINE AT 770EGREES AND 3150EGREESK. THE THIOCYANATE COMPLEX OF CRIII IN ME SUB2 CO GAVE AN ISOTROPIC SPECTRUM AT 290DEGREESK THAT WAS SIMILAR TO THE ACTUAL SPECTRUM OF THE NITROSYL COMPLEX WITH PYRIDINE. AT 77DEGREESK BUTH SPECTRA DISPLAY A DEGREE OF AXIAL SYMMETRY OF THE IMMEDIATE ENVIRONMENT OF THE COMPLEX FORMER. THE FINE STRUCTURE SPLITTING FROM PRIMEL4 N NUCLEUS OF THE NO GROUP AND OF THE EQUATORIAL AND AXIAL LIGANDS OF PYRIDINE AND THIOCYANATE UNITS. AS WELL AS THAT PRODUCED BY THE PRIMESS OR ISOTOPE IS FACILITY: KAZAN. FIZ.-TEKH. INST., KAZAN, USSR. TABULATED. UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

GARIN, B.	I.		"LUNOKHOD-1"
Chapter 7 Chapter 7 DETERMINING CECHKTHIC DIMENSIONS AND DISTRIBUTION OF CRAITERS TRAVERSED BY "LUNGKHOD-1" ON LUNAR SURFACE "I, CRAITER A. K. Leonovich, F. P. Parlov, V. B. Georgiyev, and P. S. Schenov	Hargurgment of the angles of longitudinal Q and transverse Y tilting of the tunckhod hady and continuous transmission of this telemetric information to the earth make it possible at any moment during a communications concinct to determine the shops of the tunar surface at the corresponding points uncer the loneship dissituated. In turn, measurement of the traversed path send the course of 0 the londshod maken it possible to determine the lunar is and the course of 0 the lunched maken it possible to determine the lunar is and the course of the traversed path the surface at form the lunar at function of the traversed path, reduced to the trajectory and an analysis of the traversed path, the first high lunar at the lunar at th	Figure 43 shows the trajectory of lunokhod movement across a class-B craster at some distance from its center (a) and gives the results of measurements of forware-dittiling of and bending y of the lunokhod (b,c) obtained incoming the first of the lunokhod, we well as depicting through, telebactric channels from aboard the lunokhod, we well as depicting through the longitudinal profile of the lunar surface, situated beneath the center of the lunakhod, obtained by a graphic integration of the fore-to-all thicking along the traverset path (d):	Translation of Russian-Language sonograph Persistance Independent and Ung Information Information 4. P. Vinogradovi Febr. office Acedemician A. Febr. office Acedemician A. Vinogradovi Febr. office Acedemician A. Febr. office Acedemician A. Vinogradovi Febr. office Acedemician A. Febr. office Acedemician A. Vinogradovi Febr. office Acedemician A. Febr. office Acedemician A. Vinogradovi Fe

	Sol 3725 55100 mc 612.014.421.81621.3.035.2	USE OF EMEMORD ELECTRODES AND SERSONS IN CHRONIC EXPERIMENTS ON BATS ACC. (31st-71st-645), IL. ARTICLE by N. T. Svistumou, V. M. CHIN and N. T. Kalerey Hostov, Komingham Biologiva [Herrizina, Fighth, vol. 5, No. 6, 1971, submitted for publication 9 March 1970, pp 4e-41 Abatract: This paper describes electrodes used to register the EMG and EGG, texperature sensors, a special harmas at land to the rat body immediately after operation, as well as procedures for proparing white rate for chronic asperiments. The procedure and harmas help to avoid described in the postoperation period.	White rates are readily available and convenient objects for conducting large-scale chronic experiments. However, the absence of readily available and reliable inscrumental methods for obstaining various winds of hysiological formation timits the possibilities of researchers in prolonged observations of the state of these minimize, especially under appecial emidtificates.	At the present time, both in the clinic and in experiments with large animals, physiological information is obtained using surface and embedded electrodes and amonts with wire lada and also bushly, simpledded in the electrodes and amonts with a large and amonts and also the law. V. I. Batanin, Bichardson). The use of surface electrodes and sensors during prolongual chronic experiments with rats with a fixed harmess and sensors during prolongual chromic experiments with rats with a fixed harmess on the body is difficult due to their small size and the exceptional mobility of the skin on these animals. Fresholy selsting subeddud radio cransmictors are also ill-raulted for use on rats during prolongud experiments due to their in affonitions power resources (%). Be washely and V. V. Parin), Horeover, contrictes arenated an expert of substituted answer the collection of individual types of sufficiently high-quality information.	Accordingly, the most acceptable method for obtaining the necessary information on the condition of rats in a chronic experiment still tendin, cmbedding of electrodes and sensors with wires. However, the use of this
--	---	--	--	--	---

Acc. Nr: #0047326

Ref. Code: UR 0300

PRIMARY SOURCE: Uki

Ukrayns'kiy Biokhimichniy Zhurnal, 1970, Vol 42, Nr 1, pp 50-55

DYNAMICS OF ELECTROLYTE DISTRIBUTION
AND OXYGEN CONSUMPTION IN SLICES OF THE RAT BRAIN CORTEX
UNDER VARIOUS INCUBATION CONDITIONS

N. A. Emelyanov, I. A. Garievi

The I. P. Pavlov Institute of Physiology, Academy of Sciences, USSR, Leningrad

Summary

The slices were cut with a narrow strip of blade in a special holder. "Krebs artificial serum" and natural blood plasma were used as incubation media. Dynamics of respiration, water and electrolytes distribution in inulin and non-inulin space were measured for 6 hours. The respiration in the media above was more than 200 micromoles of oxygen per gramm per hour, being near the values in vivo. A good sleady state of electrolyte distribution was observed in plasma for the whole period, in Krebs serum it continued only for 2—2.5 hours.

1/1

REEL/FRAME 19790847

Let 2

"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5 A PROCEEDING TO SEE STORY OF A PROCESSION OF A PROCEDURAL OF THE OFFICE OF A PROCESSION OF A P

1/2 009

UNCLASSIFIED

PROCESSING DATE--300CT70

TITLE-INFLUENCE OF POSTTREATMENT STORAGE ON THE FREQUENCY OF ETHYLENIMINE INDUCED CHROMOSOMAL ABERRATIONS AND GENE MUTATIONS IN BARLEY -U-

AUTHOR-(02)-GARINA, K.P., ROMANOVA, N.I.

COUNTRY OF INFO-USSR

SOURCE-MOL. GEN. GENET. 1970, 106(2), 93-105

DATE PUBLISHED----70

SUBJECT AREAS—BIOLOGICAL AND MEDICAL SCIENCES

TUPIC TAGS--PLANT GENETICS, MUTAGEN, ETHYLENE, IMINE, CHLOROPHYLL

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS-UNCLASSIFIED PRUXY REEL/FRAME--3001/0056

STEP NO---BU/0000770/106/002/0093/0105

CIRC ACCESSION NO--APO125891

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002200830010-5"

2/2 008 UNCLASSIFIED PROCESSING DATE--300CT70 CIRC ACCESSION NO--AP0125891 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. DRY SEEDS OF SPRING BARLEY VARIETY MOS 121 WERE INDUCED TO MUTATE BY SOAKING FOR 3 HR IN ETHYLENIAINE (2.3 TIMES 10 PRIME NEGATIVES UR 9.3 TIMES 10 PRIME NEGATIVES, MU), WASHED IN RUNNING TAP WATER FOR 30 MIN, DRIED, AND PLACED IN A DESICCATOR OVER GRANULATED KOH. GERMINATED SEEDS WERE EXAMD. AFTER TREATMENT OR STORAGE FGR 6-46 DAYS. CHROMOSOME CHANGES WERE STUDIED DURING ANAPHASE WITH PREPNS. FROM SHOOT TISSUE. A WAVE TYPE MUTABILITY EFFECT WAS OBSERVED. WITH STATISTICALLY SIGNIFICANT CHANGES IN THE LEVEL OF CHROMOSOME REARRANGEMENTS, OF CHLOROPHYLL MUTATIONS, DEATH RATE AND FERTILITY OF MI PLANTS. THE MAX. GENETIC EFFECT WAS FOUND AT THE 18TH DAY OF STORAGE AND AFTER THIS TIME POTENTIAL CHANGES WERE REPAIRED. THE CHLOROPHYLL MUTATIONS EXHIBITED BOTH CHANGING FREQUENCY AND SPECTRUM. THUS, BOTH GENE AND CHRCMOSOME REARRANGEMENTS APPEAR FIRST AS POTENTIAL CHANGES. FACILITY: INST. GEN. GENET., MOSCOW, USSR.

UNCLASSIFIED